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Abstract. The amount of data that is being made available on the Web is 
increasing. This provides business organisations with the opportunity to acquire 
large datasets in order to offer novel information services or to better market 
existing products and services. Much of this data is now publicly available (e.g., 
thanks to initiatives such as Open Government Data). The challenge from a 
corporate perspective is to make sense of the third party data and transform it so 
that it can more easily integrate with their existing corporate data or with 
datasets with a different provenance. This paper presents research-in-progress 
aimed at semantically transforming raw data on U.K. registered companies. The 
approach adopted is based on BORO (a 4D foundational ontology and re-
engineering method) and the target technological platform is Neo4J (a graph 
database). The primary challenges encountered are (1) re-engineering the raw 
data into a 4D ontology and (2) representing the 4D ontology into a graph 
database. The paper will discuss such challenges and explain the transformation 
process that is currently being adopted. 

Keywords: 4D ontology, perdurantism, foundational ontology, semantic 
transformation, graph databases, Neo4J, Big Data.  

1 Introduction 

The amount of data that is currently made available on the Web is growing thanks 
primarily to the Linked Open Data (LOD) initiative. While LOD data tends to be in 
formats such as the Resource Description Framework (RDF) and Microformats, there 
is also an enormous amount of data made available in other structured formats and 
more often even semi-structured or unstructured. This is the case of data that is 
privately sold (e.g., by credit risk companies) or made publicly available by 
Government Agencies (e.g., open government data initiatives) [1].  

In order to more effectively process and integrate data from a multitude of sources 
as well as make it semantically consistent with the existing enterprise data 
architecture, we have chosen to adopt ontologies. More specifically we adopt a 4D 
foundational ontology [2, 3] to drive the interpretation of such data sources, improve 
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the semantic expressiveness of the data and harmonise it in a consistent manner. The 
approach that we are adopting, therefore, begins with the raw data, ontologically 
interprets and transforms the data in order to extract its semantics and express such 
semantics in 4D ontologies. These 4D ontologies are then mapped to a graph-based 
data architecture. Neo4J [4] is the implementation technology that we have currently 
chosen to adopt. The main reasons for adopting a graph database to persist the 
ontological models are: (1) the flexibility that a graph structure provides in 
implementing any modelling paradigm and (2) the scalability it provides in terms of 
organising and accessing massive amounts of data. 

The paper is organised as follows. Section 2 defines the problem in more detail. It 
also explains the reasons for underpinning the data re-engineering with a foundational 
ontology and why a graph database was chosen as the implementation technology. 
Section 3 provides an overview of the 4D foundational ontology adopted to underpin 
the re-engineering effort. Section 4 explains the challenges of mapping the 
foundational ontology to a graph and Section 5 presents a few mapping patterns 
discovered to date. Section 6 describes related work and Section 7 concludes the 
paper and discusses future work. 

2 The Research Problem 

This research investigates the problem of integrating large datasets from different 
sources into one common data repository or into an existing corporate database. While 
this research focuses on large datasets acquired externally, it must be noted that the 
approach described in this paper can also be applied by organisations to examine their 
own vast transactional datasets from which to glean potential competitive information. 

The datasets that are being referred to here are, for example, those made available 
by authorities such as Companies House (the U.K. Company Registration Office). 
These datasets come in a variety of formats. For example, datasets available at 
data.gov.uk are currently provided as CSV (Comma-Separated Values) or JSON 
(JavaScript Object Notation) files. In essence the underlying original structure is that 
of a spreadsheet. Normally such files and their corresponding JSON representations 
are direct format conversions from legacy spreadsheets or flat files. This is normally 
apparent from the denormalised form that such data assumes. While syntactically 
structured (in terms of rows and columns), much of the semantics of these datasets is 
implicit and cannot be readily integrated with other datasets. The integration of 
multiple datasets is not a mere technical problem, but it also represents a business 
opportunity for organisations to exploit in this new era of the Digital Economy [5]. As 
stated by the U.K. Cabinet Office, the aim is to create “an information marketplace 
for entrepreneurs and businesses; releasing valuable raw data from real-time transport 
information to weather data” [6].  

The overall research problem also has another aspect to it, which is performance. In 
fact, since the amount of data processed can easily be in a range that runs from hundreds 
of gigabytes to tera/petabytes, there is also a technical challenge of processing so called 
Big Data [7]. This paper however will only focus on the problem of semantic 
transformation, which represents the part of the research carried out to date. Future 
work, as documented in Section 6, will explore the other aspects of the research. 
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Re-engineering data can be viewed as essentially a problem of semantic 
interpretation, in other words a process of interpreting the raw data and identifying the 
things that the data refers to in the real world (or any possible world). This realist 
approach is greatly simplified by the adoption of a foundational ontology to drive the 
re-engineering. A foundational (or upper-level) ontology defines the kinds of 
existence that things can have (i.e., a categorical theory). Categorical theories are 
studied in Philosophy. 

In Philosophy, Ontology, as a discipline, is the study of existence and of the kinds 
of things that (can) exist. One aspect of existence is change over time, and in this area 
there are two predominant ontological theories: endurantism and perdurantism [8]. In 
endurantism a three-dimensional object is wholly present at any given instant and 
persists by ‘sweeping’ through a region of space-time (in the words of Sider [8]). 
Another aspect of ontology is identity; and a key question is whether there is any 
criterion of identity and what it is. One endurantist approach is to say that while 
wholly present at all moments of its existence, an object preserves its identity via a set 
of essential attributes (for example, a person’s DNA). The perdurantist approach sees 
an object as a four-dimensional extension (or extent) in the universe (i.e., occupying a 
region of space-time) and it is not therefore totally present at any given instant, but 
instead only partially present. A common perdurantist criterion of identity is the 
object’s four-dimensional extension. In its lifetime an object goes through states (or 
stages). For example, a person goes through the stages of childhood and adulthood. In 
perdurantism change is explained via successive temporal parts. Therefore, while an 
endurantist object persists in three-dimensional space and entirely shifts from one 
point in time to the next, in perdurantism an object exists in four-dimensional space-
time and can be regarded as partially present at any time or portion of its 
spatiotemporal extension. 

In this research we adopt BORO, a 4D foundational ontology, described in the 
following section. The adoption of a perdurantist ontology is motivated by it being 
particularly suitable to model the enterprise context and its continuously changing 
nature. Perdurantism models change by representing stages of a particular object as 
temporal parts (examples include changes of address, changes of legal status and 
changes of a company’s primary type of activity). Perdurantism and extensionalism 
naturally allow to model particular objects with intersecting spatiotemporal extents, 
for example, between a person (Bill Gates) and a company position (CEO of 
Microsoft). These aspects of 4D ontologies (along with others) provide more explicit 
and accurate representations of change in terms of a succession of different temporal 
parts. Greater accuracy in the models produced can lead to greater levels of flexibility 
and reusability when evolving information systems (IS) as more thoroughly explained 
by Partridge [2]. 

In order for ontologies to provide concrete and visible benefits to IS engineering it 
is essential to take the ontological models beyond the modelling/design stage and 
attempt to use them not only to influence the implementation of technological 
artefacts (e.g., databases and software), but preferably to realise the ontologies in the 
technology itself. This means being able to take a foundational ontology with  
the modelled domain ontologies and create a database or software implementation 
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that maintains high levels of direct traceability to the ontology. With most traditional 
paradigms (e.g., relational databases and object-oriented languages), aligning the 
technological implementation to the ontology is possible, but given the paradigm 
mismatch, development normally occurs with ‘workarounds’ that may have a 
negative impact on ontological alignment.  

In graph databases [9] representations assume a graph form with nodes and edges. 
Edges represent relations between nodes. Properties can be defined for both the nodes 
and the edges. Graph databases are schemaless; this means that, unlike relational 
databases in which data must be represented and stored in a rigid structure with tables, 
rows and columns, the only structural constraint that graph databases dictate is the 
graph structure (a network of nodes connected by edges). This allows the 
modeller/developer significantly increased flexibility in the way the data is 
represented. From a metamodelling perspective this implies that the metamodel can 
be treated as data and represented as a graph and combined with its model 
instantiations also represented in the same graph. In our case the foundational 
ontology represents the metamodel and the domain ontologies represent the 
metamodel instantiations. As a consequence, our working research ‘hypothesis’ is that 
a schemaless database would enable us to implement the database in a form that more 
closely resembles the 4D ontology. 

3 A Perdurantist Foundational Ontology 

BORO, developed by Partridge [2], is a perdurantist upper level ontology strongly 
based on extensionality. BORO influenced the ISO 15926 standard and inspired the 
upper level ontology of the International Defence Enterprise Architecture 
Specification for exchange Group [10], adopted by the U.S. Department of Defense 
Architecture Framework (DoDAF). BORO has been applied in various industrial 
sectors including finance, oil and gas, and defence. 

The aim of this section is to present the BORO foundational ontology and provide 
the reader with the fundamental knowledge to understand the work described in the 
remainder of the paper. It is beyond the scope of this paper to provide an exhaustive 
explanation and definitions of the whole foundational ontology. For an in depth 
presentation of BORO the reader is invited to refer to Partridge [2] in its original form 
or IDEAS [10] for a slightly modified, yet still detailed, version. 

From a philosophical perspective the BORO foundational ontology explicitly 
addresses a set of metaphysical choices. BORO has adopted: (1) a realist stance 
towards ontology, that is it takes for granted a mind-independent real world; (2) a 
revisionary stance – accepting that if we want better models, we need to change the 
ways we look at the world; (3) completeness categories based upon extensional 
criteria of identity and (4) a 4D and possible worlds approach as these fit best with its 
commitment to extensionalism [11]. 

Figure 1 presents a graphical representation of the foundational ontology. The 
names of the foundational objects are prefixed with ‘F_’. The notation is that of the 
Unified Modelling Language (UML).  
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At its highest level the BORO foundational ontology represents:  

• Objects: Anything that exists. (In IDEAS the term Thing is used in place of 
Objects.) 

• Elements: An element is a physical body with a spatiotemporal extent (i.e., 
particulars). 

• Types: A type is a set or class of objects (i.e., universals). The extension of a type 
is given by all the objects of that type. Objects of a certain type are said to be 
instances of that type. Types can have individual instances (ElementTypes), type 
instances (Powertypes) or tuple instances (TupleTypes). Only TupleTypes are 
explicitly represented in Figure 1. 

• tuples: A tuple is a relationship between two (in the case of couples)or more 
objects. Examples of subtypes of tuples include typeInstances, superSubTypes, 
powertypeInstances and wholeParts. 

• TupleTypes: A type whose instances are tuples. There is a powertypeInstance 
relation between TupleTypes and Tuples. 

• TemporalParts: A temporal part is an individual whose spatiotemporal extent is 
part of another individual. 

• Events: An event is an individual temporal part that does not persist through time 
(i.e., an event has zero ‘thickness’ along the time dimension). Events represent 
temporal boundaries that either create (CreationEvents) or dissolve 
(DissolutionEvents) individuals (e.g., a person) or individual temporal parts that 
persist through time (i.e., states). 

• States: A state is a temporal part of an individual that persists through time. States 
(and elements in general) are bounded by events. A state can have further 
temporal parts (i.e., states and events). 

• happensTo: This tuple type relates an event with one or more individuals affected 
by the event. happensTo has two subtypes: 
o creates: Relates a creation event with the element(s) whose creation is 

triggered by the event. 
o dissolves: Relates a dissolution event with the element(s) whose dissolution is 

triggered by the event. 
• happensAt: This tuple type relates an event with a time instant or interval 

(TimeInstantsOrIntervals) and it indicates the time at which an event takes place. 
• temporalPartOf: This tuple type relates an individual with its temporal parts 

(states and/or events). 
 

To visually clarify how BORO as a perdurantist ontology models the real world 
including change, let us consider a simple example of a company (Acme Company 
Ltd.) who during the course of its life changes its primary business activity from the 
production of paper to the production of mobile phones. Such information is normally 
legally required by Company Registration Offices. This is represented in Figure 2. As 
the figure shows Acme (as a 4D element) extends through space-time. A portion of 
Acme’s extension has a temporal part named ‘Business Activity 1’ representing the 
company’s paper manufacturing stage (or state) and another temporal part named 
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‘Business Activity 2’ representing the mobile phone manufacturing stage. Both stages 
have extents that are physically part of Acme’s overall spatiotemporal extension. 
There are also three events implicitly represented by the lines that bound the states. 
The temporal boundary on the left of ‘Business Activity 1’ represents the event 
creating that stage, the boundary lying between ‘Business Activity 1’ and ‘Business 
Activity 2’ represents an event that dissolves the first state and creates the second 
state. The boundary to the right of ‘Business Activity 2’ dissolves this state. 

 

Fig. 1. BORO foundational ontology (partial view). (TupleTypes are represented in light grey).  

 
Fig. 2. Example space-time map 
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4 Implementing the Upper Ontology 

4.1 The Foundational Graph 

In order to represent ontological models in a database (in our case a graph database) it 
is necessary to represent and load the foundational ontology first of all. It is the 
foundational ontology that enables the representation of the domain ontology derived 
from the raw data. In essence things in the domain ontology will instantiate or subtype 
the high-level types of the upper level (i.e., the types represented in Figure 1). Since 
all models are a graph, the model in Figure 1 should ideally be transposed as it stands 
into the graph database. However a few considerations must be made. 

In BORO tupleTypes and tuples are first-class objects. As Figure 1 shows 
tupleTypes, like F_happensTo and F_creates, are not simply drawn with the UML 
association notation but explicitly represented with the UML class symbol. This is 
necessary in order to allow the ontologist to describe the tupleTypes and tuples 
themselves. For example, subtyping a tupleType as in the case of F_temporalPartsOf 
and F_wholeParts. 

In the graph implementation we have therefore chosen to maintain the same 
explicit representation of tupleTypes and tuples. Therefore when representing a 
relation (R1) between two things (e.g., Prince William and Prince Charles) in Neo4J, 
the relation is not simply represented with two nodes and an edge (i.e., [William Æ 
Charles]), but with three nodes and two edges. This enables us to say the following:  

 
[William Æ R1 Æ Charles]            (1) 
[childOf Æ typeInstances Æ R1]           (2) 
[tuples Æ superSubTypes Æ childOf]           (3) 
[tupleTypes Æ typeInstances Æ childOf]          (4) 

 
While it is important to explicitly represent relations, there are three upper-level 
relations that are unsurprisingly very widely used: typeInstances, superSubTypes and 
powertypeInstances.  In these three cases we have decided to simply name the edges 
(as shown in the above listing) rather than reify the relations. The name would be 
implemented as a property of the edge. This makes the graph more compact with, in 
this context, losing required explanatory power. Otherwise a relation like (3) would 
become: 

 
[tuples Æ R2 Æ childOf]            (5) 
[superSubTypes Æ typeInstances Æ R2]           (6) 

 
With typeInstances relations there is another reason for using this compact form. The 
problem in Philosophy is known as the Third Man Argument (or Bradleyian Regress) 
and leads to an infinite regress of reified relations. For example, in (5) of the above 
listing the reification of the typeInstances relation leads to the following: 
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[tuples Æ R2 Æ childOf]            (7) 
[superSubTypes Æ R3 Æ R2]           (8) 
[typeInstances Æ R4 Æ R3]            (9) 
[typeInstances Æ R5 Æ R4]          (10) 
ad infinitum … 

 
R3, R4 and R5 are all instances of typeInstances leading to an infinite chain of 
relations. 

4.2 Graphs of Domain Patterns 

Besides being a foundational ontology, BORO also defines a method for discovering 
general ontological patterns from existing systems and data. These general patterns 
enforce reusability and enable the ontologist to apply existing semantic models to the 
knowledge discovered from the interpreted data. As with the foundational ontology, 
these general patterns must also be loaded into the graph database before they can be 
used; however unlike the foundational layer, such patterns can be loaded in parallel 
with the semantic interpretation of the data as long as they are present in the database 
prior to their use.  

An example of a general pattern is the Naming Pattern (in the model the prefix 
used is ‘N_’) represented in graph form in Figure 2. The N_Names type represents the 
set of all possible names in the world. N_Names is a type and not an element. For 
example, the name John is considered as the set of all utterances (written, oral, etc.) 
that name people called “John”. A naming space is a set of names; for example, the 
set of registration numbers that Companies House issues to uniquely identify a 
company.  

It is important to note that while all nodes of the graph are labelled by a ‘name’ 
property in Neo4J, this property merely names the modelling element and it is not 
meant to be a name for the thing being modelled. The only exception is the name  

 

 

Fig. 3. Naming Pattern in Neo4J 
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property of N_Names. Names of real world objects must be represented as instances 
of the N_Names type to which the named object is related via the N_namedBy 
tupleType. 

For reasons of space other patterns are not shown here but will be referred to later 
in the paper. 

5 Semantic Transformation of the Data 

This research uses a dataset acquired from Companies House in the U.K. The dataset 
was provided as a CSV file of approximately 3 GB corresponding to a spreadsheet of 
173 columns and approximately 3.5 million rows.  An extract of the column headings 
is provided in Table 1. The data was managed with custom-built code written in 
Python importing the standard CSV module. For the creation of the graph database 
the py2neo API was used in order to send REST requests to the Neo4J server. 

Table 1. Extract of the column headings of the data file 

registration_
number 

legal_status_
code date_inc latest_accounts_date latest_ar_date 

After implementing the foundational ontology and those patterns deemed relevant 
to the domain (e.g. names, persons and intentionally constructed objects), the 
semantic interpretation of the data proceeded as follows.  

First, the set of rows was interpreted. This implies understanding what a row refers 
to and the type it is an instance of.  In this case each row refers to an individual U.K. 
company. The type instantiated is named UKCompanies. Once the meanings of the 
elements and the type have been determined, these objects must then be related to 
existing patterns and via the patterns to the foundational ontology. If no existing 
pattern appears to be relevant then this may be a sign that a new pattern may be 
hidden in the data and possibly discovered through further analysis. In this instance 
the Persons pattern previously loaded can be reused. In fact UKCompanies is a 
subtype of LegalPersons which in turn is a subtype of Persons.  

The next (and most significant) step is to iterate through the columns of the 
spreadsheet and semantically interpret them. While the interpretation of the set of 
rows was relatively straightforward (at least in our case), interpreting column data 
presents some interesting challenges. There are a few mapping patterns (MP) that 
have emerged and summarised as follows: 

MP1: If ri represents the specific element that a row refers to and Ri its type, then one 
can think of a column as representing a type (Ci) and the intersection with the row 
(i.e., each cell) explicitly representing an instance of Ci (or ci). Implicitly represented 
are also a tuple type (Ti) and a tuple (ti). For example, with the first column (named 
“registration_number”) the mapping in Table 2 emerges. 
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Table 2. Example of Mapping Pattern MP1 

Spreadsheet 
Type 

Value Refers to Referent BORO 
Foundation 

Column name 
(Ci) 

registration_number Set of all registration 
numbers assigned by 
Companies House 

CHRegNumbers F_Types 

Cell value (ci) “0000006” Individual registration 
number assigned to a 
company 

“0000006” (instance of 
CHRegNumbers) 

F_Elements 

Implicit relation 
(Ti) 

n/a Set of all relations between 
UK Companies and 
Registration Numbers 

namedByCHReg-
Number 

F_TupleTypes 

Implicit relation 
(ti) 

n/a Relation between a specific 
UK company and the 
registration number 
“0000006” 

The tuple: 
(Company6, 0000006) 

F_tuples 

MP2: In many cases the columns cannot be interpreted in isolation because their 
values represent elements that have relations between them. For example, there are 
columns representing the different parts of a company’s address (street and number, 
city, county, etc.). In this case there exists a wholeParts relation between them 
respectively. As a consequence the rules in MP1 are applied along with another 
interpretation rule which maps (and makes explicit) the implicit relations between the 
types represented by the columns and the pairs of elements represented by the cell 
values of those columns on the same row.  

MP3: Some cells contain values that encode and map to more than one real world 
element or even to an entire classification structure. An example of the former is a 
composite address (e.g., 123 Main Street). In this case ‘123’ refers to a specific 
building while ‘Main Street’ refers to a whole street. The latter case (which actually 
may be a mapping pattern in its own right) is exemplified by the U.K. Standard 
Industry Codes (SIC).  In this case a specific code, expressed as a string (of numeric 
characters) in the spreadsheet, codifies a structure in which the code can be broken 
down into parts, with each part representing successive groupings of companies. In 
SIC terminology these groupings are called sector, division, group, class and subclass. 
Coding schemes like SIC are classification systems, which BORO can handle well 
with PowerTypes (or the set of all subtypes of a given type) in conjunction with 
superSubTypes and powertypeInstances (two tuple types of the foundational 
ontology). This type of semantic transformation allows us to explicitly model and 
refer to an entire classification system (i.e., SIC), relate it to other classification 
systems (for example, successive versions of SIC) and relate it to a naming space (in 
this case U.K. SIC codes). This is an effective example of how BORO is capable of 
transforming a set of simple codes (e.g., “0311”) into a complex ontological structure. 
Thanks to BORO’s strong extensionality principle a clear and explicit distinction is 
made between a classification system and its naming space. 

MP4: This mapping pattern builds on MP3 and relates to cases in which there is a 
succession of columns that represent a type of change that a company may undergo in 
its lifetime. Examples include a change of address, change of name, change of SIC 
code, etc. While there are subpatterns that are not discussed here for limitations of 
space, a typical case is one in which there are columns representing the current status 
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(e.g., current address) and the previous four statuses (addresses) plus further columns 
specifying when the various changes (of address) occurred. The mapping to a 4D 
ontology translates into a new subtype of F_States (e.g. CompanyX_at_AddressY), a 
new subtype of F_Events (e.g., AddressChange) and all related subtuples/types that 
this entails as modelled in the foundational ontology. While the original data was 
limited to the representation of only four previous addresses, the 4D graph model can 
record an unlimited number of changes. This pattern is a clear example of the 
effectiveness of the 4D approach in modelling change. In fact, with each change of 
address the new state represents a temporal part of the company, which can be itself 
related to its corresponding address, thus providing a more objective model of what 
occurs in the real world.  

The above mapping patterns are a non-exhaustive list. As the research progresses 
and more data is semantically analysed, we expect to discover further mapping 
patterns with more clearly defined rules, as well as refine the existing rules. At this 
stage the mapping is being carried out manually and the translation rules are being 
encoded in Python on a case-by-case basis. We envisage that once these patterns are 
tested against a greater amount of data, we will be able to develop generic APIs for 
each consolidated and tested mapping pattern so as to gradually proceed to a much 
higher level of automation for the further 4D re-engineering of data.  

6 Related Work 

The focus of the work presented in this paper is on the semantic transformation of 
large amounts of data (e.g., Big Data) acquired typically from heterogeneous sources 
and in semi-structured raw formats (e.g., CSV files). This problem is part of a broader 
research area related to the re-engineering of data and systems. In fact the challenges 
encountered and described here are typical of most projects that adopt processes 
similar to what is known as Extraction-Transformation-Loading (ETL) [12]. While 
ETL is mostly applied in Data Warehousing, the general problems are common. In 
our case, however, the main differences lie in the transformation phase, which is 
entirely driven by a 4D foundational ontology. In brief, for us transformation consists 
of Semantic Interpretation (translation into the 4D paradigm), Semantic Improvement 
(generalise to existing patterns or identify general reusable ontological patterns), and 
Semantic Harmonisation (consistently integrate the new ontologies and patterns into 
the existing ontological graph). Moreover previous work carried out on ontology-
driven ETL (e.g., [13]) normally adopts a Semantic Web (OWL/RDF) approach 
rather than be driven by a philosophically grounded foundational ontology. 

Further literature (for example, see [14] and [15]) also investigates ontologies in 
the context of public data and its use for providing information services. However, 
even here, as with most ontology related ETL work, the focus is on Semantic Web 
Technologies (primarily Linked Data) with no grounding in philosophical 
foundational ontologies. 

An example of previous research that has also investigated the use of foundational 
ontologies to derive domain models and ontology patterns from Web resources is 
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SmartWeb Integrated Ontology (SWIntO) [16]. However in this case the authors 
adopted a foundational ontology (merger of DOLCE and SUMO), which focused on 
linguistic-cognitive aspects. This was fully justified in this project due to SmartWeb 
system’s heavy reliance on linguistic information.  In fact one of the main objectives 
of the research was to “produce domain-specific ontologies that are relevant for 
mobile and intelligent user interfaces to open-domain question-answering and 
information services on the Web”. In our case, a linguistic-cognitive based ontology 
would not have been suitable since our aim is for the re-engineered models to 
ultimately be fully integrated with an organisation’s corporate knowledge assets, 
hence our decision to adopt a foundational ontology that is context-independent and 
mind-independent. Such an approach appears, in our view, more appropriate toward 
facilitating the integration of multiple data sources with the existing corporate data. 

7 Conclusion 

This paper summarised the initial findings of research-in-progress aimed at re-
engineering large amounts of raw data with a 4D ontology and implementing the 
ontology in a graph database (Neo4J). The research thus far uncovered some of the 
major challenges related to (1) implementing a 4D foundational ontology in a graph 
database, (2) semantically interpreting raw data in a spreadsheet format to a 4D 
ontology and (3) identifying mapping patterns which, with further testing, can help to 
move from a manual data translation into a more automated mapping to the 4D 
ontology and consequent loading of the semantically interpreted model into Neo4J. 

Once the semantic problem of translating the data from its raw form to a 4D 
ontology and a 4D graph is proven effective our next step will be to integrate further 
data sets which besides being grounded in the 4D foundational ontology must be 
harmonised with the previously reengineered models. We will also explore 
developing an automated solution that will adopt the discovered mapping patterns to 
transform the data into 4D representations. Performance will also be fundamental for 
information retrieval and general usage once the system goes into the production 
stage. This means that while the database will be semantically rich and expressive 
thanks to its strong ontological foundation, it must also run on an architecture that 
guarantees high accessibility and performance [7]. 

Acknowledgement. The authors wish to thank James Dobree, CEO of Level Business 
Ltd., for funding this research.  
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